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Abstract: We analyze the bonding in a number of networks of heavy main group elements comprised of
finite-length linear chains fused at right angles. Isolated linear chain building blocks may be understood easily
by analogy with three-orbital four-electron “hypervalent” bonding picture in such molecules as I3

- and XeF2.
After deriving the appropriate electron-counting rules for such linear units, we proceed in anaufbauto fuse
these chains into simple (and not so simple) infinite networks. It is proposed that (a) infinite Sb3 ribbons of
vertex sharing squares are stable for an electron count of 20 electrons per three atoms (i.e., Sb3

5-); (b) sidewise
fused Sb double ribbons are stable for an electron count of 38 electrons per six atoms (i.e., Sb6

8-); (c) Sb4

strips cut from a square lattice are stable at the electron count of 24 electrons per four atoms (i.e., Sb4
4-); (d)

Te6 defect square sheets are stable at the electron count of 40 electrons per six atoms (i.e., Te6
4-). The

electronic structures of the solid-state compounds containing these networks, namely La12Mn2Sb30, R-ZrSb2,
â-ZrSb2, Cs3Te22, and Cs4Te28, are elaborated. We propose preferred electron counts for two hypothetical Sb
ribbons derived from the Sb3 ribbon in La12Mn2Sb30. A possibility of geometry distortion modulation by excess
charge in lattices comprised of even-membered linear units is suggested.

1. Introduction

Classical Zintl-Klemm ideas have been fertile in rationalizing
and predicting the crystal structures and chemical and physical
properties of innumerable solid-state compounds. Many phases
containing main group elements conform well to these rules,
which derive from the octet rule in molecular chemistry. For
instance, NaTl is the classical Zintl-Klemm compoundsan
electron is transferred from electropositive Na to Tl, the resulting
Tl- acquiring bonding properties characteristic of group fourteen
elements and forming a diamond net.1

While the structures of most compounds of late heavy main
group elements such as Sb and Te conform to Zintl-Klemm
electron-counting rules, we have recently pointed to a large
number of elemental, binary, ternary, and quaternary phases
where an alternative and modified electron-counting scheme is
required to rationalize the bonding in them.2 Thus, infinite linear
chains are stable for an electron count of seven electrons per
atom, square sheets for six electrons per atom, and a cubic lattice
for five electrons per atom.2 We have also proposed magic or
preferred electron counts for a number of other main group
element networks which may be derived from linear chains and
square sheets. Our analysis shows that there is a direct
connection between bonding in these delocalized infinite
networks and the well-known concept of hypervalent bonding
for molecular compounds.

The linear chains, square sheets and other more complicated
related networks have something in commonsthe σ-bonding
framework for these lattices is so delocalized that it does not
make much sense to discuss individual bonds; the band structure

formalism is the most appropriate (see our earlier work for more
detailed analysis2). However, hypervalent bonding occurs in the
solid state in the completely localized form as well, an obvious
example being the I3

- anion surrounded only by cations. For
compounds with localized hypervalent bonding the Zintl-
Klemm electron-counting rules need to be modified only
slightly, to take into account the appropriate number of electrons
characteristic of isolated hypervalent molecules instead of the
number dictated by the classical octet rule.

There is yet another group of main group element networks
which are intermediatein their bonding picture between the
completely delocalized bonding in linear chains and square
sheets and localized hypervalent bonding in molecules such as
I3

- and XeF2. Although the correspondingσ-framework orbitals
broaden significantly into bands in these lattices, the underlying
hypervalent molecular orbitals are still recognizable and serve
as useful predictors of stability.3 At first glance these networks
might seem to be unrelated to each other. However, they all
may be constructed in a systematicaufbaufrom finite-length
linear chains fused in an appropriate way. The goal of this paper
is illustrate how one may develop electron-counting rules for
various networks derived from finite-length linear rods. Our
starting point is the well-understood picture of three-orbital four-
electron hypervalent bonding in molecular compounds, which
we generalize to longer chains. Once these are in hand, we show
how to construct various networks by fusing these chains
together and properly taking into account the change in the
number of electrons which ensues on fusion.

We use several solid-state compounds of Sb and Te to
illustrate our ideas. The bonding in some of these compounds
has been studied earlier in other contexts by us, as well as by
others, however, we illustrate in this paper a novel, heuristically
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useful approach to understanding these materials.2-7 We start
by analyzing the electronic structure of a one-dimensional Sb
ribbon of vertex-sharing squares found in La12Mn2Sb30.8 Similar
ribbons fuse sidewise into wider strips in theR-ZrSb2structure,
which we discuss next, along with Sb4 ribbons found in the
â-ZrSb2 crystal structure. Finally, we illustrate how the relatively
complicated Te subnetwork in the Cs-Te binary phases may
be rationalized as Te5 rods fused in a simple way to form two-
dimensional defect square sheets.

2. The Electronic Structure of Simple Finite Linear
Chains

The analysis of the electronic structure of finite linear chains
of heavy main group elements is facilitated by the absence of
strong s-p mixing for these elements, as well as the relative
unimportance ofπ-bonding.2,9 An underlying assumption in our
analysis, based on much experience, is that for a chemical
species to be stable, its bonding and nonbonding molecular
orbitals must be filled while strongly antibonding molecular
orbitals must be empty. The necessity for filling weakly
antibonding orbitals depends on a particular system; but these
may be filled as well.

Since there is relatively little s-p mixing for such elements
as Sb and Te, it is reasonable to consider the lower-lying
s-orbital as a lone-pair (a detailed analysis of the role of s-p
mixing is given elsewhere2). The p-orbitals perpendicular to the
linear chains (px and py in 1 if the chain is propagated along
thez-axis) are engaged inπ interactions which by being weak
for heavy elements introduce a relatively small splitting between
π-bonding andπ-antibonding levels. It turns out that these
weakly antibonding orbitals are low enough in energy that they
are almost always populated. Therefore, one may consider the
perpendicular px and py orbitals as lone pairs as well.

The reasoning above leads us to the conclusion that only pz

orbitals are responsible for the bonding interactions which hold
the linear chain together. The bonding scheme for a three-
membered linear chain, such as in I3

-and XeF2 was addressed
very early in the literature by Pimentel and Rundle,10,11and has
become known as electron-rich three-center or hypervalent
bonding.12,13 According to this scheme three pz orbitals in a
linear triatomic molecule split into bonding, nonbonding, and
antibonding molecular orbitals (see1). If the first two molecular
orbitals are filled with electrons, this results in a total of 6× 3
+ 4 ) 22 electrons per molecule, which is consistent with the
number of electrons in I3

- and XeF2. This picture of four-

electron three-orbital bonding is an oversimplification since
some mixing with the lower-lying s-orbitals does occur.
However, this additional mixing does not lead to any critical
changes.

The description of the electronic structure for longer odd-
numbered finite linear chains parallels that for a triatomic unit.
The s and px and py orbitals are lone pairs, while the pz orbitals
split into a group of equally numbered bonding and antibonding
molecular orbitals and a single nonbonding (actually, weakly
antibonding due to mixing with s) molecular orbital (Figure 1).
For even-membered chains the molecular orbital splitting pattern
for the pz orbitals is topologically differentsall orbitals are either
bonding or antibonding (Figure 1). Therefore, even-membered
linear chain atoms may carry only one electron per pz orbital
while their odd-membered counterparts may carry additional
electrons ((n + 1)/n electrons per pz for ann-membered chain).

If one were to construct extended networks using linear chains
as building blocks, the different electron counts for odd and
even membered linear chains would imply different electron
counts for these networks as well. In the next three sections we
are going to explore the electronic structure of various strips
and sheets that contain three-, four-, and five-membered finite
linear chains as their basic building blocks

3. One-Dimensional Sb3 Ribbons

One-dimensional Sb3 ribbons of vertex-sharing Sb squares
found in the antimony sublattice of La12Mn2Sb30

8 may be
thought of as a collection of fused Sb3 finite linear units (see
3); thus, they serve as a good starting point for our analysis. In
the actual structure, the ribbons undergo a sliding distortions
of the central Sb atoms (3a), while here we consider only
idealized ribbons (3b). The electronic effects behind the second-
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Figure 1. Hückel energy level diagram for the MOs derived from the
pz orbitals in linear equidistant Sb chains (Sb-Sb 3.0 Å)
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order Jahn-Teller interactions leading to the sliding distortion
is given in our previous paper, here we only look at the electron
counting in these ribbons.3

The aufbau process of constructing the Sb3 ribbon from linear
triatomic sticks is schematically depicted in Figure 2 (only
“hypervalent” electrons are shown explicitly). Each Sb atom in
Figure 2 possesses at least two lone pairs, s and pz, while some
Sb atoms carry an additional px or py lone pair if that particular
orbital does not participate in three-center bonding. For instance,
there are six electrons in px lone pairs in linear triatomic Sb3

(Figure 2a) in addition to 12 electrons in s and pz lone pairs. If
four electrons involved in electron rich bonding, shown
schematically in a box in Figure 2a, are added to these 18
electrons in lone pairs, then an electron count of 6+ 12 + 4 )
22 electrons per Sb3 molecule results, in agreement with the
previous discussion.

Next, we consider fusing two linear Sb3 molecules into an
Sb5 unit with a square coordination for the central atom (Figure
2b). In addition to 4× 5 ) 20 electrons in s and pz lone pairs,
there are also 8 electrons in px or py lone pairs for “ligand” or
terminal Sb atoms (these lone pairs lie in the plane of the

molecule and are perpendicular to the three-center bonds). Since
another eight electrons participate in “hypervalent” bonding,
there are overall 20+ 8 + 8 ) 36 electrons in this molecule,
or Sb5

11-. Notice, that classical hypervalent XeF4 also has 36
valence electrons, that is, our derivation is internally consistent.

One may continue the build-up process in an incremental
manner (Figure 2c-d), adding Sb3 sticks on each step, counting
lone-pair and hypervalent electrons along the way. The final
result of such construction is the infinite Sb3 ribbon. In the unit
cell of three Sb atoms (Figure 2e), there are 12 electrons in s
and pz lone pairs, while there are no px and py lone pairs, as the
latter all participate in three-center bonding. In addition, we
should count eight “hypervalent” electrons per unit cell, bringing
up to 20 the number of electrons per unit cell. This is, we
believe, the magic electron count for infinite X3 ribbons, where
X is a heavy late main-group element. This electron count is
consistent with the total number of electrons in the unit cell of
La12Mn2Sb30 as inferred from the preferred electron counts for
the Sb sublattices in the structure as well as detailed band
structure calculations.3

One geometric way to think about Sb3 ribbons is to consider
them as one of the most narrow strips cut from a square lattice.14

Wider Sb strips are found in the binary Zr-Sb phases.15-17

Electron-counting rules for these ribbons are discussed next.

4. Electronic Structure of ZrSb2 Binary Phases

Binary and ternary Sb phases with transition metals are often
hard to interpret. Behind this is the relatively small difference
between the Sb and transition metal electronegativities. The
oxidation states of the transition metal ions are often completely
unknown from experimental work and are difficult to assess
theoretically. We wish to show that for some specific interme-
tallic phases we can pull out and study isolated classical or
electron-rich subnetworks. The nature of the bonding in an
isolated subnetwork is then a reasonably good starting point
for the subsequent analysis of the total structure.

The ZrSb2 binary phases are intermetallic compounds in
which the electronic fingerprints of the isolated Sb subnetworks
are not destroyed much in the total structure. The crystal
structure ofR-ZrSb2 was reported by Kjekshus.15 Later Garcia
and Corbett16,17 carried out comprehensive experimental and
theoretical studies of various Zr-Sb binary phases. Since we
are interested in electron-rich Sb networks, in the subsequent
discussion we are going to focus only on two Zr-Sb phasess
R-ZrSb2 and â-ZrSb2. Our own analysis is complementary to
the important work of Garcia and Corbett.17

4.1. Where Are the Extra Electrons in R-ZrSb2? A
perspective view of theR-ZrSb2 crystal structure and the Sb6

strip is given in Figure 3, a and b. There are two Sb sublattices
in the structure, Sb2 pairs and Sb6 strips, in the ratio Zr8(Sb2-
(pair))2(Sb6(strip))2 The Sb6 strip can be imagined as constructed
from two Sb3 strips, which we have already examined (see3).

We determined that the optimal electron count for a one-
dimensional Sb3 strip is 20 electrons per unit cell, that is, Sb3

5-.
What happens to the electron count when two strips are brought
close to each other sidewise (Figure 3b)? Since lone pair-
lone pair interactions are expected to be repulsive, one should
remove an electron from each edge Sb lone pair in order to
form a bond between two ribbons (cf.4). Taking into account

(14) Another narrow strip, the simple ladder, has been discussed by us
in ref 2.

(15) Kjekshus, A.Acta Chem. Scand.1972, 26, 1633.
(16) Garcia, E.; Corbett, J.J. Solid State Chem.1988, 73, 440.
(17) Garcia, E.; Corbett, J.J. Solid State Chem.1988, 73, 452.

Figure 2. Hypothetical build-up process of Sb3 ribbons from triatomic
linear units. In addition to the electrons shown, each Sb possesses four
electrons in s and pz lone pairs. For molecules (a-c) some of the Sb
atoms carry a px or py lone pair if those atoms are not engaged in
bonding for the corresponding directions (for example, each Sb carries
a px lone pair in a). Only electrons involved in three-center bonding
are shown explicitly.
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the loss of two electrons per unit cell, the resulting electron
count is Sb6

8-.

There exists another Sb substructure inR-ZrSb2, one consist-
ing of isolated Sb2 pairs with a long (3.07 Å) Sb-Sb bond (Sb4
in Figure 3a). If one were to assume a single bond between
these two Sb’s, and complete an octet around each, a 4- charge
would be assigned to the Sb2 unit. The eight formula units in
theR-ZrSb2 unit cell (Zr8Sb16) can be broken down as Zr8(Sb6-
(strip))2(Sb2(pair))2. Following our qualitative reasoning, the
overall charge on the Sb network is 2× (8-) + 2 × (4-) )
(24-). If we further assume that Zr is 4+ (Zr8

32+), then there
remain eight unaccounted electrons in the unit cell. At this point,
without doing any calculations, we can only say that, when
Zr8

32+, Sb12
16- (strips), and Sb4

8- (pairs) are brought together,
something will be reduced by eight electrons.

The description of bonding inR-ZrSb2 is significantly
complicated by the existence of many Zr-Sb bonding states
near the Fermi level.17 The closest Zr-Zr contacts are at 3.42
Å, a distance much longer than found typically for a Zr-Zr
bond. However, our computed Zr-Zr overlap populations
(discussed below) are indicative of weak bonding interactions.
The additional eight electrons can enter Zr lone pairs, Zr-Sb
bonding states, and/or Zr-Zr weakly bonding states, or Sb2 pair
Sb-Sb antibonding states, or Sb6 strip Sb-Sb antibonding
states. Where do these additional electrons end up?

The changes in atomic charges, as computed from a Mulliken
population analysis, provide us with the initial clue about the

reduction process. When eight electrons are added to Zr8Sb16
8+,

the overall charge on Zr atoms decrease by-5.35, on Sb pairs
by -0.73, and on Sb strips by-1.91. Hence, there is a strong
indication that Zr atoms are reduced, with formal oxidation states
closer to+3 than to+4. These changes in the Zr Mulliken
charges do not tell us whether the Zr nonbonding orbitals (lone
pairs) or Zr-Sb bonding states become occupied. The same
ambiguities remain for Sb pairs and Sb strips.

We attempt to gain a deeper insight into the nature of the
reduction by eight electrons with the help of fragment overlap
population analysis.18 The total number of electrons in the
system may be partitioned into the sum of intra-fragment and
inter-fragment overlap populations. Following this procedure,
we have found that out of eight electrons added to Zr8Sb16

8+,
4.79 enter Zr lone-pair bands, 1.12 enter Zr-Sb bonding states,
and 2.11 enter the Sb subnetwork.

We calculated also within the rigid band approximation
various overlap populations in compositeR-ZrSb2 as a function
of electron filling by the last eight electrons (Figure 4). The
overlap population for the long 3.42 Å Zr-Zr contacts is
enhanced by more than 50% upon the addition of eight electrons
to the unit cell (Figure 4), but its absolute value remains very
low. The initially large Zr-Sb overlap population is further
enhanced by approximately 5% (Figure 4). Zr nonbonding states
along with the Zr-Sb states serve as the largest sink for those
eight electrons. Using the overlap population analysis for various
bonds we estimate that (1) the formal oxidation state of Zr is
much closer to 3+ than to 4+ and (2) the Sb2

4- pairs and the
Sb6

8- are reduced by 2.11 electrons. Our results, although from
a somewhat different prospective, are not inconsistent with the
work of Garcia and Corbett.17

An unexpected consequence of adding eight electrons is the
partial reduction of Sb2

4- pairs by 0.23 electron per one pair.
One would expect all extra electrons in the Sb sublattice to be
accommodated by low-lying unoccupied bands of hypervalent
Sb6 strips. Why does the high-lying antibondingσ* band of
the classical Sb2

4- unit get partially filled? Garcia and Corbett17

noticed a sharp Sb2 pair antibonding peak in COOP just below
the Fermi level. This sharp peak (Figure 5a), which we attribute
to theσ* antibonding band, is situatedaboVe the Fermi level
in the isolated Sb sublattice. When the latter sublattice interacts

(18) Glassey, W.; Papoian, G.; Hoffmann, R.J. Chem. Phys.1999, 111,
893.

Figure 3. (a) Perspective view of ZrBb2 (R-ZrSb2-type) crystal
structure. Zr: small dark spheres. Sb: large light sphere. (b) A
perspective view and selected distances in Sb6 strips.

Figure 4. Various overlap population values inR-ZrSb2 as a function
of electron filling. The total number of electrons in the unit cell of
charge neutral Zr8Sb16 is 112. 104 electrons is the electron count for
(Zr4+)8(Sb6

8-(strip))2(Sb2
4-(pair))2.
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with the Zr sublattice, the main body of theσ* peak is strongly
pushed up and dispersed, due to the interaction with the Zr
bands, as would have been anticipated. But the same interaction
produces a satellite peak (Figure 5b), more than 5 eV below
the originalσ* peak. Since this satellite peak is below the Fermi
level in the calculation of theR-ZrSb2 crystal structure, its
population by electrons weakens the Sb-Sb bonding in Sb2
pairs. But it does not break it entirely.

This satellite peak can be attributed to an unusual, concen-
trated coupling of the originalσ* band with the Zr d-bands. To
understand this coupling, we modeled the Sb2 pair environment
in R-ZrSb2 by molecular Sb2Zr8(7a). As for the extended case,
the σ* orbital is mostly pushed up and is dispersed due to the
interaction with Zr. But we find an analogous low-lying
molecular orbital, corresponding to the coupling in the extended
structure; that molecular orbital is depicted in5b (Sb’s are black
central atoms in5a).

Despite the intermetallic nature ofR-ZrSb2 it is possible to
analyze individual classical Zintl and hypervalent Sb subnet-
works, then reassemble them back into the total crystal structure.
The hypervalent electron-counting scheme developed for Sb3

strips has served as a valuable starting point for this analysis.
Unfortunately, no such starting point exists yet for the descrip-

tion of bonding in Sb4 strips inâ-ZrSb2. This is the next topic
which we take up.

4.2. Electronic Structure of â-ZrSb2. At first glance the
crystal structure ofâ-ZrSb2 (Figure 6a) appears to be simpler
than the one ofR-ZrSb2. This is perhaps true from the structural
point of view, but the electronic structure ofâ-ZrSb2 is quite
involved. Behind this are nontrivial secondary interactions
between Sb2 and Sb1 in one-dimensional Sb4 strips (Figure 6b).
One can approach these strips from two extreme viewpoints.
In one case one assumes no interaction between side and central
atoms in the strips. Alternatively, one may think of the Sb4 strip
in Figure 6b as being derived from a more symmetrical strip
with equal Sb1-Sb1 and Sb1-Sb2 distances. These two
conceptual fragmentations lead to different charges on the Sb
lattice. This is the main source of our complications.

Under the first assumption of isolated Sb2 atoms and isolated
Sb1 zigzag chains, a 3- charge is assigned to Sb2 atoms and
a 1- charge is assigned to Sb1 atoms. Taking into account the
crystal site multiplicities, the charges inâ-ZrSb2 can be formally
assigned as Zr4+Sb1-Sb3-. Garcia and Corbett17 noticed that
this simple Zintl picture is not completely consistent with
metallic properties ofâ-ZrSb2sthey suggest an important role
for Zr-Sb bands. Our calculations indicate the electronic
structure ofâ-ZrSb2 is significantly altered from the Zr4+Sb1-Sb3-

formulation due to strong Sb2-Sb1 interactions. Therefore, we
proceed next to estimate the electron count for a symmetrical
Sb4 strip, cut from an ideal square lattice.

If the Sb4 strip lies in thexyplane, then assuming once again
weak π-bonding and weak s-p mixing, we fill completely
lower-lying s and pz lone pairs. We have chosen the direction
of x andy axes in such a way (see Figure 6b), that they point
toward Sb-Sb bonds in the Sb4 strip. Each atom in the strip is
involved in two four-center bonding patterns both inx and y
directions.

As we noted, even-membered chains have different molecular
orbital patterns than those of the odd-membered ones (Figure

Figure 5. Sb-Sb COOP (solid line) and its integration curve (broken
line) for the interaction in Sb2 pairs in (a) the isolated Sb sublattice,
taken fromR-ZrSb2, with the electron count corresponding to Sb16

24-,
and (b) the full crystal structure ofR-ZrSb2.

Figure 6. (a) Perspective view ofâ-ZrSb2 crystal structure.17 Zr: small
dark spheres. Sb: large light spheres. (b) Perspective view and selected
distances in Sb4 strips.
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1). For example, the three-orbital interaction (see 2) produces
bonding, nonbonding, and antibonding orbitals. On the other
hand, the four-orbital basis leads to two bonding and two
antibonding orbitals (see6). Therefore, electron filling by four
electrons (one electron per atom) should be strongly favored
over filling by six electrons, when one of the antibonding orbitals
becomes filled. In the Sb4 strip of â-ZrSb2each Sb is involved
in two four-center bonds (x andy directions); therefore, each
Sb should possess six electrons (2(s)+ 2(pz) + 1(px) + 1(py)),
making it Sb1-. Accordingly, the charges inâ-ZrSb2 should be
written formally as Zr2+Sb11-Sb21-. The band structure of the
isolated Sb4 strip (not shown here) is consistent with the
electronic description just made.

We see that, if there are no Sb1-Sb2 interactions, then the
charge on the Sb subnetwork forces a 4+ formal oxidation state
on Zr. On the other hand, when Sb1-Sb2 interactions are as
strong as Sb1-Sb1 interactions, then Zr is reduced to 2+.
Starting from the Zr4+Sb3-Sb1- formulation, we can imagine
that as the Sb1-Sb2 interactions are gradually turned on, bands
related to MO3 in7 are pushed up until at some point they
dump their electrons into the Zr levels. The Sb1-Sb2 COOP
for the isolated Sb4

8- strip taken fromâ-ZrSb2 is given in
Figure 7a. For the Fermi level determined for this charge, the
Sb1-Sb2 overlap population is a negative number (-0.25),
consistent with our analysis (the bands corresponding to
antibonding MO3 in7 are filled and overcome the bonding in
the lower occupied levels). When the Zr4+ ions are introduced
into the isolated Sb sublattice (Figure 7b), the Fermi level

dramatically drops, resulting in a positive Sb1-Sb2 overlap
population (0.16), which is still less than 0.33 in
Sb4

4-(antibonding bands corresponding to MO3 completely
empty). The Sb1-Sb1 overlap population also becomes en-
hanced when Zr4+ ions interact with the Sb sublattice inâ-ZrSb2.

Taking into account the previous results, we conclude that
the combination of Zr4 + and Sb3-Sb1- into a single-crystal
structure leads to a significant backflow of electron density to
the Zr sublattice (mainly to Zr-Sb states17). The oxidation state
of Zr is, therefore, intermediate between 4+ and 2+.

Next we consider two-dimensional defect Te square lattice
in the binary Cs3Te22 phase which can also be thought of as
being comprised from nowfiVe-memberedlinear chains.19,20

5. Unusual Te Networks in Cs-Te Binary Phases

The beautiful crystal structure of the Te-rich Cs3Te22 binary
phase was reported by Sheldrick and Wachhold (see Figure 8).19

Two noninteracting Te substructures coexist in Cs3Te22, Te8

isolated crown-shaped rings and Te6 two-dimensional nets.19,21

It is safe to assume the neutrality of Te atoms in Te8 rings,
since each Te is classically bonded to two other Te atoms
(detailed arguments for the charge assignment and bonding are
given in ref 22). As there are six sheet Te atoms in the Te22

formulation, we are led to a 3- charge on the Te6 sheets:
(Cs3

3+[Te(crown)16]0[Te(sheet)6]3-).
Liu, Goldberg, and Hoffmann (see also Jobic and co-

workers23) have analyzed in detail the bonding in Te6
3- sheets

using a band-structure formalism.22 Since the Te atoms in this
sheet are found in a locally linear or T-shaped arrangement,
one would expect that the hypervalent bonding ideas would be

(19) Sheldrick, W. S.; Wachhold, M.Angew. Chem., Int. Ed. Engl.1995,
34, 450.

(20) Sheldrick, W. S.; Wachhold, M.Chem. Commun.1996, p 607.
(21) Kanatzidis, M. G.Angew. Chem., Intl. Ed. Engl.1995, 34, 2109.
(22) Liu, Q.; Goldberg, N.; Hoffmann, R.Chem. Eur. J.1996, 2, 390.
(23) Jobic, S.; Sheldrick, W. S.; Canadell, E.; Brec, R.Bull. Soc. Chim.

Fr. 1996, 133, 221.

Figure 7. Sb1-Sb2 COOP (solid line) and its integration curve (broken
line) for the interaction in (a) the isolated Sb sublattice, taken from
â-ZrSb2, with the electron count corresponding to Sb4

8-; (b) the full
crystal structure ofâ-ZrSb2.

Figure 8. Perspective view of the Cs3Te22 crystal structure. Cs: large
dark spheres. Te: smaller light spheres.
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helpful in determining the optimal electron count for those
sheets. As may be seen in Figure 9, there are two types of Te
found in Te6 sheets: Te1 being three-coordinated and Te2 being
two-coordinated. Defocusing from the obvious squares in the
structure, one may also view the Te6 sheet as comprising Te5

linear units crossing each other at right angles. We take this
structural hint, analyze the bonding for isolated Te5 units and
then combine them into a two-dimensional sheet.

Five-membered linear chains were briefly encountered when
deriving the optimal electron count for finite linear chains.
Consistent with that previous discussion, we assume a low-lying
s lone pair and two p lone pairs (p-orbitals perpendicular to the
chain direction (see7). Next we populate allσ molecular orbitals
except the antibonding ones: due to 2:1:2 splitting ofσ-levels,
six electrons are needed (see schematic drawing8). Therefore,
to derive the preferred electron count for this two-dimensional
network, one should multiply by six the number of five-center
bonds per unit cell and add to that the number of lone pair
electrons.

One observes in Figure 9 that four five-center bonds emanate
from each unit cell, being shared, however, with neighboring
unit cells. Thus, the two-dimensional Te net in Cs3Te22 contains
two five-center bonds per Te6 unit cell, which in turn corre-
sponds to 6× 2 ) 12 electrons residing in these delocalized

bonds. In addition, each Te2 atom has an in-plane lone pair
perpendicular to multicenter bonds, as shown in Figure 9. If 6
× 4 ) 24 s and pz lone pairs electrons are also taken into
account, then one arrives at the 12+ 4 + 24 ) 40 electrons
per unit cell, which corresponds to the Te6

4- formulation.
As mentioned earlier, the actual charge is one electron less,

that is, Te6
3-. We do not have (nor did earlier studies) an

explanation of why the system chooses to be slightly oxidized.
Be that as it may, from the theoretical construction presented
above, one would expect this electron to be removed from a
band originating from the nonbondingσ-orbital (see8). Indeed,
the band structure analysis of Te6 sheets carried out by Liu,
Goldberg, and Hoffmann indicated that the Fermi level crosses
through the middle of a band which is derived from above-
mentioned nonbondingσ-orbitals (actually, these orbitals are
somewhat antibonding due to mixing with lower lying s-bands,
as we have suggested several times in the earlier discussion).22

Another remarkable feature of previous band-structure calcula-
tions is the presence of a wide band gap (about 2 eV) between
the highest half-filled “nonbonding” hypervalent band and the
remaining σ-antibonding bands.22 This provides yet another
justification for our frontier orbital approach of populating Te5

molecular orbitals.
There is a yet simpler way to arrive at the Te6

4- assignment.
First, we notice that the optimal electron count for any odd-
membered linear chain of a heavy main group element may be
derived by breaking it into pairs and one isolated atom. For
example, linear hypervalent I3

- may thought of as being
assembled from a classical I2 pair and an isolated I- atom.
Similarly, if we break up a Te5 unit into two side Te2

2- pairs
and a central Te2- atom, the Te5

6- assignment of charges
results. For the Te6 two-dimensional sheets we use isolated
Te4

0 squares and Te2- atoms as building blocks, which leads to
the -4 charge derived above (see9).

This line of reasoning works remarkably well for the Te
network in the related Cs4Te28 binary phase (Figure 10).20 This
nicely complicated compound contains Te8 rings, Te4 squares,
and Te6 helical chains (Cs4Te(ring)8Te(square)8Te(chain)12).
Two ends of the latter chains (Te6

2-) are engaged in strong
secondary interactions (3.15 and 3.19 Å) with Te4

0 squares so
as to interlink the consecutive Te6-like (as in Cs3Te22) two-
dimensional sheets (see Figure 10). The interaction of lone pairs
on bridging Te atoms with the Te4

0 isolated squares may be
described in exactly the same way as the previously considered
interactions between lone pairs on isolated Te2- atoms and Te4

0

squares in Te6
4- sheets (see9).

Unlike the Te6 sheets in the Cs3Te22 binary phase, the Te20
4-

network in Cs4Te28 corresponds exactly to our hypervalent

Figure 9. Two-dimensional Te network in Cs3Te22.
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formulation, that is, it is not oxidized by one electron. The
difference between in-square Te-Te bonds and square Te-
bridging Te bonds is somewhat higher in Cs4Te22 (∼2.93 Å
and ∼3.17 Å) than in Cs3Te22 (∼3.00 Å and∼3.08 Å). The
reason for the greater distortion in the Te substructure in Cs4-
Te22 is not immediately obvious. The crystal structures and
patterns of bonding of Cs3Te22 and Cs4Te28 are closely related,
as may be easily seen by comparing Figures 8 and 10, and as
noted by the synthesizers of these beautiful compounds.

The bonding in the very unusual two-dimensional Te6 sheet
in Cs3Te22 and the three-dimensional Te20 network in Cs4Te28

is amenable to analysis with our hypervalent electron-counting
ideas. For other aspects of bonding in these fascinating structures
we refer readers to the earlier papers.19-22

6. Predicting Electron Counts for Hypothetical Networks

The electron-counting ideas put forward in this paper have
been applied to a number of Sb ribbons and Te sheets,
rationalizing the experimentally observed electron counts. Our
theory possesses predictive power as well, with a potential to
help solid-state chemists to design new electron-rich networks.
Since one could propose an infinite number of one-, two-, and
three-dimensional networks constructed from linear rods of
different lengths, here we demonstrate only the application of
our electron-counting scheme to two hypothetical one-dimen-
sional ribbons related to the Sb ribbons discussed earlier.

The first ribbon which we propose (10) may be derived from
the Sb3 ribbon in La12Mn2Sb30 (see3a,b) by adding an array of
Sb atoms to each side of the Sb3 ribbon. These atoms are marked
as SbIII in 10. One may arrive at an infinite square lattice by
repeatedly applying this construction. The translational unit cell
in 10 contains five Sb atoms, thus we will refer to10 as an Sb5
ribbon.

To count electrons in the Sb5 ribbon, we first notice that each
Sb has s and pz lone pairs, thus resulting in 5× 4 ) 20 lone
pair electrons per unit cell. The remaining px and py orbitals
form a delocalizedσ-framework, which we approximate as a
collection of noninteracting Sb5 linear units (four Sb-Sb bonds
per Sb5 unit). Since we know that six electrons are needed for
a stability of an isolated five-center electron-rich “bond” (see
8), all we have to do is to count the number of such bonds per
unit cell. There are eight bonding Sb-Sb contacts per Sb5 unit
cell (see10). Any five-center system contains four bonds. Thus,

one has in this case a net total of 8/4) 2 such five center bonds.
Therefore, 2× 6 ) 12 electrons per unit cell is the preferred
electron count for theσ-framework of the Sb5 ribbon, leading
to the overall electron count of 20+ 12 ) 32 electrons per
unit cell (i.e. Sb-7/5).

Yet another hypothetical one-dimensional ribbon may be
derived from the familiar Sb3 ribbon (see3b) by adding SbIII

atoms to link alternatively neighboring central squares from
above and below (see11). Although the resulting translational
unit cell contains eight Sb atoms, one might consider as well a
“helical” unit cell twice as small. In the following discussion
we use the translational unit cell as a basis for electron counting,
referring to it as an Sb8 ribbon.

As in the previous example, we count first the lone pair
electronssthere are 8× 4 ) 32 such s and pz electrons per
translational unit cell. As for the px - py σ-framework, the
situation is more interesting here. The electron-counting rules
are different for odd-membered and even-membered rods (see
the discussion in preceding sections). Although the parent Sb3

ribbon (see3b) consists of three-membered rods, the Sb8 ribbon
is comprised of four-membered rods as its building blocks.
Consequently, one expects four electrons in each of these four-
center bonds (see6). Simple counting show that there are 12
Sb-Sb bonds in the Sb8 ribbon unit cell, which in turn is
equivalent to 12/3) 4 four-center bonds per unit cell (each
four-center rod contains three Sb-Sb bonds). Therefore, 4× 4
) 16 electrons are required for the stability of theσ-framework,
bringing the total number of electrons to 32+ 16 ) 48 per
unit cell (i.e., Sb-, as in a simple square lattice2).

If the Sb8 ribbon were to distort in a way reminiscent of the
Sb4 ribbon distortion inâ-ZrSb2 (Figure 6b) then SbIII-SbII bond
would stretch, resulting in the Sb3 strip (3b) and nearly isolated
SbIII atoms (such a distortion would be the solid-state analogue
of the second-order Jahn-Teller effect3). Since we have already
determined that 20 electrons are needed per Sb3 unit cell (40
for two unit cells), and eight electrons are required for the
stability of an isolated SbIII atom (16 for two atoms), then we
arrive at 40+ 16 ) 56 electrons per Sb8 unit cell (i.e., Sb2-)
for stability of the distorted version of ribbon11. We suggest

Figure 10. Perspective view of the Cs4Te28 crystal structure. Cs: large
dark spheres. Te: smaller light spheres.
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countercation substitution or designed nonstoichiometries could
tune continuously this structural deformation (from undistorted
Sb- to highly distorted Sb2-). Notice that equivalent distortions
do not change the preferred electron counts for ribbons
composed of odd-membered rings.

7. Conclusions

The concept of electron-rich or hypervalent bonding as
applied to molecules such as I3

-, XeF2, PF5 (and many others)
has been recognized as most useful in the chemical community.
It has also been used by our and other groups to analyze the
electronic structure of solid state compounds having essentially
zero-dimensional hypervalent units immersed into the matrix
of other ions and networks. However, there exist many,
seemingly unrelated, extended networks of heavy main group
elements in hundreds of solid-state compounds which may be
brought under a common roof using and extending the ideas of
hypervalent bonding to infinite systems.2 In our recent work
we have demonstrated that infinite linear chains, square sheets,
cubic lattices, and numerous other networks derived from these
possess distinct electron counts which determine the structural
stability of these networks.2

In the current work we have considered the electronic
structure of infinite networks which exhibit a behavior inter-
mediate between the completely localized hypervalent bonding
in molecular compounds and completely delocalized bonding
in infinite linear chains and square sheets. For instance, one-
dimensional ribbons of vertex-sharing squares may be thought
of as having two three-orbital four-electron bonds centered on
central atoms. This analogy has allowed us to propose an
electron count of 20 electrons per three atoms for these ribbons
(Sb3

5-), which is consistent with the overall number of elec-
trons in La12Mn2Sb30, where these ribbons are found.

Paired Sb3 ribbons as well as isolated Sb2 pairs are found in
the R-ZrSb2 crystal structure. When two isolated ribbons are
brought sidewise together, a repulsion results due to interactions
of side Sb lone pairs. To form inter-ribbon bonds, each side Sb
must be oxidized by one electron, leading to the overall Sb6

8-

formulation for these ribbons. Assuming a-4 charge on the
Sb2 pairs and a+4 formal charge for Zr, one is led to the
Zr8

32+Sb12
16-(strips)Sb4

8-(pairs) assignment of charges, that is,
eight electrons short from being charge neutral. Our fragment
overlap population analysis suggests that there is a significant
backflow of electrons to Zr and it is better to consider the latter
as Zr3+. We also have attributed the unusual elongation of the
Sb-Sb bond in the Sb2 pairs to the mixing of itsσ* orbital
with the Zr d-orbitals and its subsequent population.

Sb4 ribbons found in theâ-ZrSb2 are more difficult to analyze
because of the even number of atoms in the linear chains which
serve as building blocks. Two extreme viewpoints are possible
for this material: (1) side Sb atoms do not interact with the
middle Sb zigzag chain, leading to a Zr4+Sb-(zigzag)Sb3--
(isolated), and (2) the side and central interactions are similar,
leading to a Zr2+Sb2-(strip). From our band-structure calcula-
tions it follows that there are significant interactions between
the side atoms and the zigzag chain; the second formulation is
a better description of bonding in this material.

Two-dimensional Te defect square sheets in the Cs-Te
phases may also be thought of as comprising finite five-
membered linear chains. When five-membered linear chains are
fused to form a defect square sheet and the electron count is
adjusted properly for this construction, one arrives at the Te6

4-

formulation. Compared to this result, it turns out that these sheets
are oxidized by one electron in Cs3Te22; a nonbonding hyper-

valent band is oxidized. Te sheets are cross-linked into a three-
dimensional structure by Te6 helical chains in the related Cs4Te28

binary phase. Our proposed electron count corresponds exactly
to the total number of electrons for this material.

The systematic procedure which we have developed for
reconstructing the electronic structures of one-dimensional
ribbons and two-dimensional sheets may be applied not only
to known phases La12Mn2Sb30, R- andâ-ZrSb2 but also to design
new lattices having linear chains as building elements. To
illustrate this point we have proposed two one-dimensional Sb
ribbons having five and eight atoms in the unit cell respectively
which are related to the Sb3 ribbon in La12Mn2Sb30. For the
Sb5 ribbon, entirely comprised of five-center bonds, we have
calculated a fractional charge of-7/5 per Sb atom (Sb-7/5). As
for the Sb8 ribbon, composed of four-center bonds, we have
suggested a-1 charge for the undistorted ribbon and-2 charge
for the highly distorted geometry. Thus, we predict that networks
assembled from even-membered linear chains may serve as
charge reservoirs by accommodating or expelling an excess
charge by a simple distortion.

In summary, short hypervalent linear chains of heavy main
group elements serve as convenient building blocks for an
aufbauof a number of seemingly unrelated extended networks.
While the underlying “hypervalent” molecular orbitals broaden
into bands in the extended systems, the latter still carry some
memory of the molecular hypervalent bonding. One may
develop electron-counting rules for a large number of extended
networks by adjusting systematically the number of electrons
when using hypervalent rods to construct these networks.
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Appendix I: Computational Details

All calculations were performed with the help of “Yet
Another extended Hu¨ckel Molecular Orbital Package(YAeH-
MOP)”, a program developed in our group by G. Landrum.24

The standard atomic parameters were used for Sb and Zr. The
parameters are listed in Table 1 with the corresponding
references.
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Table 1. Extended Hu¨ckel Parameters; theú’s Are the Exponents
of the Slater Orbital Basis Set, thec’s the Coefficients in a
Double-ú Expansion

atom orbital Hii(eV) ú1 c1 ú2 (c2) ref

Sb 5s -18.8 2.323 25
5p -11.7 1.999

Zr 5s -9.87 1.817 26
5p -6.76 1.776
4d -11.18 3.835 0.6210 1.505 0.5769
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